Understand asymmetric AKA public key cryptography

Understand asymmetric AKA public key cryptography

For thousands of years the art of encryption consisted in hiding one secret from the enemy. By gaining access to this secret the opponent could decode the message and, perhaps, future messages encoded using the same key. Many complicated secret encodings were created, like the Vigenère cipher where the secret alphabet would change among several pages of possible alphabets. The Nazis created a fabulous machine called Enigma, which would use a complex mechanical system of rotors to produce very strong encryption in the age before computers. In fact modern electronic computers were researched and developed greatly by Alan Turing and a team of allied codebreakers at Bletchley Park during the wartime efforts to break Enigma! Cryptography is at the heart of Computer Science and has been a major driving force for computer development throughout the years. Today games and entertainment are likely the greatest drivers of innovation, but cryptography will never lose its place at the birth of the computer.

Breaking cryptography, then, for hundreds of years boiled down to guessing a key. But modern computers can break any historical cryptographic key in minutes. All a computer has to do is try billions of combinations. Since this was impossible up until WWII, such crypto systems were considered secure. For example, a Vigenère cipher could take a lifetime to break using pencil and paper. With a modern computer all possible Vigenère alphabets would be tested in seconds and the secret code revealed. It was clear that against modern computers more would be needed than the clever combinatorial mechanisms of the past. Computers are applied math, and advanced math would be needed to keep computers from breaking codes.

This was the reality of cryptanalysis post World War II – math was the new weapon against programmable computers. Intelligence agencies quickly shifted more and more resources towards math geeks fresh out of top universities. Newly graduated mathematicians, computer scientists and logicians would find excellent jobs researching number theory, cryptography, abstract algebra and correlated subjects. It was the dream job for any geek, to play with the world’s greatest computers and do what they loved the most, cryptographic research.

Continue Reading:   Next Page
Jump To Page:   1 2 3 4 5 6 7 8 9 10